
5G Toolbox™
User's Guide

R2018b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

5G Toolbox™ User Guide
© COPYRIGHT 2018 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History
September 2018 Online only New for Version 1.0 (Release 2018b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

End-To-End Simulation
1

Transmission over MIMO Channel Model with Delay Profile
TDL . 1-2

Plot Path Gains for TDL-E Delay Profile with SISO 1-4

Reconstruct Channel Impulse Response Using CDL Channel
Path Filters . 1-6

Signal Reception
2

Extract PBCH Symbols and Channel Estimates for
Decoding . 2-2

Code Generation and Deployment
3

What is C Code Generation from MATLAB? 3-2
Using MATLAB Coder . 3-2
C/C++ Compiler Setup . 3-3
Functions and System Objects That Support Code

Generation . 3-3

Functions and System Objects Supported for MATLAB
Coder . 3-4

iii

Contents

End-To-End Simulation

1

Transmission over MIMO Channel Model with Delay
Profile TDL

Display waveform spectrum received through a Tapped Delay Line (TDL) multi-input/
multi-output (MIMO) channel model from TR 38.901 Section 7.7.2 using an
nrTDLChannel System object.

Define the channel configuration structure using an nrTDLChannel System object. Use
delay profile TDL-C from TR 38.901 Section 7.7.2, a delay spread of 300 ns, and UT
velocity of 30 km/h:

v = 30.0; % UT velocity in km/h
fc = 4e9; % carrier frequency in Hz
c = physconst('lightspeed'); % speed of light in m/s
fd = (v*1000/3600)/c*fc; % UT max Doppler frequency in Hz

tdl = nrTDLChannel;
tdl.DelayProfile = 'TDL-C';
tdl.DelaySpread = 300e-9;
tdl.MaximumDopplerShift = fd;

Create a random waveform of 1 subframe duration with 1 antenna.

SR = 30.72e6;
T = SR * 1e-3;
tdl.SampleRate = SR;
tdlinfo = info(tdl);
Nt = tdlinfo.NumTransmitAntennas;

txWaveform = complex(randn(T,Nt),randn(T,Nt));

Transmit the input waveform through the channel.

rxWaveform = tdl(txWaveform);

Plot the received waveform spectrum.

analyzer = dsp.SpectrumAnalyzer('SampleRate',tdl.SampleRate);
analyzer.Title = ['Received Signal Spectrum ' tdl.DelayProfile];
analyzer(rxWaveform);

1 End-To-End Simulation

1-2

See Also
System Objects
nrTDLChannel

 See Also

1-3

Plot Path Gains for TDL-E Delay Profile with SISO
Plot the path gains of a Tapped Delay Line (TDL) single-input/single-output (SISO)
channel using an nrTDLChannel System object.

Configure a channel with delay profile TDL-E from TR 38.901 Section 7.7.2. Set the
maximum Doppler shift to 70 Hz and enable path gain output

tdl = nrTDLChannel;
tdl.SampleRate = 500e3;
tdl.MaximumDopplerShift = 70;
tdl.DelayProfile = 'TDL-E';

Configure transmit and receive antenna arrays for SISO operation.

tdl.NumTransmitAntennas = 1;
tdl.NumReceiveAntennas = 1;

Create a dummy input signal. The length of the input determines the time samples of the
generated path gain.

in = zeros(1000,tdl.NumTransmitAntennas);

To generate the path gains, call the channel on the input. Plot the results.

[~, pathGains] = tdl(in);
mesh(10*log10(abs(pathGains)));
view(26,17); xlabel('Channel Path');
ylabel('Sample (time)'); zlabel('Magnitude (dB)');

1 End-To-End Simulation

1-4

See Also
System Objects
nrTDLChannel

 See Also

1-5

Reconstruct Channel Impulse Response Using CDL
Channel Path Filters

Reconstruct the channel impulse response and perform timing offset estimation using
path filters of a Clustered Delay Line (CDL) channel model with delay profile CDL-D from
TR 38.901 Section 7.7.1.

Define the channel configuration structure using an nrCDLChannel System object. Use
delay profile CDL-D, a delay spread of 10 ns, and UT velocity of 15 km/h:

v = 15.0; % UT velocity in km/h
fc = 4e9; % carrier frequency in Hz
c = physconst('lightspeed'); % speed of light in m/s
fd = (v*1000/3600)/c*fc; % UT max Doppler frequency in Hz

cdl = nrCDLChannel;
cdl.DelayProfile = 'CDL-D';
cdl.DelaySpread = 10e-9;
cdl.CarrierFrequency = fc;
cdl.MaximumDopplerShift = fd;

Configure the transmit array as [M N P Mg Ng] = [2 2 2 1 1], representing 1 panel
(Mg=1, Ng=1) with a 2-by-2 antenna array (M=2, N=2) and P=2 polarization angles.
Configure the receive antenna array as [M N P Mg Ng] = [1 1 2 1 1], representing a
single pair of cross-polarized co-located antennas.

cdl.TransmitAntennaArray.Size = [2 2 2 1 1];
cdl.ReceiveAntennaArray.Size = [1 1 2 1 1];

Create a random waveform of 1 subframe duration with 8 antennas.

SR = 15.36e6;
T = SR * 1e-3;
cdl.SampleRate = SR;
cdlinfo = info(cdl);
Nt = cdlinfo.NumTransmitAntennas;

txWaveform = complex(randn(T,Nt),randn(T,Nt));

Transmit the input waveform through the channel.

[rxWaveform,pathGains] = cdl(txWaveform);

1 End-To-End Simulation

1-6

Obtain the path filters used in channel filtering.

pathFilters = getPathFilters(cdl);

Perform timing offset estimation using nrPerfectTimingEstmate.

[offset,mag] = nrPerfectTimingEstimate(pathGains,pathFilters);

Plot the magnitude of the channel impulse response.

[Nh,Nr] = size(mag);
plot(0:(Nh-1),mag,'o:');
hold on;
plot([offset offset],[0 max(mag(:))*1.25],'k:','LineWidth',2);
axis([0 Nh-1 0 max(mag(:))*1.25]);
legends = "|h|, antenna " + num2cell(1:Nr);
legend([legends "Timing offset estimate"]);
ylabel('|h|');
xlabel('Channel impulse response samples');

 Reconstruct Channel Impulse Response Using CDL Channel Path Filters

1-7

See Also
Functions
nrPerfectTimingEstimate

1 End-To-End Simulation

1-8

Signal Reception

2

Extract PBCH Symbols and Channel Estimates for
Decoding

Extract physical broadcast channel (PBCH) symbols from a received grid and associated
channel estimates in preparation for decoding a beamformed PBCH.

PBCH Coding and Beamforming

Create a random sequence of binary values corresponding to a BCH codeword. The
length of the codeword is 864, as specified in TS 38.212 Section 7.1.5. Using the
codeword, create symbols and indices for a PBCH transmission. Specify the physical layer
cell identity number.

E = 864;
cw = randi([0 1],E,1);
ncellid = 17;
v = 0;
pbchTxSym = nrPBCH(cw,ncellid,v);
pbchInd = nrPBCHIndices(ncellid);

Use nrExtractResources to create indices for the two transmit antennas of a
beamformed PBCH. Use these indices to map the beamformed PBCH into the transmitter
resource array.

P = 2;
txGrid = zeros([240 4 P]);
F = [1 1i];
[~,bfInd] = nrExtractResources(pbchInd,txGrid);
txGrid(bfInd) = pbchTxSym*F;

OFDM modulate the PBCH symbols mapped into the transmitter resource array.

txWaveform = ofdmmod(txGrid,256,[22 18 18 18],[1:8 249:256].');

PBCH Transmission and Decoding

Create and apply a channel matrix to the waveform. Receive the transmitted waveforms.

R = 3;
H = dftmtx(max([P R]));
H = H(1:P,1:R);
H = H/norm(H);
rxWaveform = txWaveform*H;

2 Signal Reception

2-2

Create channel estimates including beamforming.

 hEstGrid = repmat(permute(H.'*F.',[3 4 1 2]),[240 4]);
 nEst = 0;

Demodulate the received waveform using orthogonal frequency division multiplexing
(OFDM).

 rxGrid = ofdmdemod(rxWaveform,256,[22 18 18 18],0,[1:8 249:256].');

In preparation for PBCH decoding, extract symbols from the received grid and the
channel estimate grid.

[pbchRxSym,pbchHestSym] = nrExtractResources(pbchInd,rxGrid,hEstGrid);
figure;
plot(pbchRxSym,'o:');
title('Received PBCH Constellation');

 Extract PBCH Symbols and Channel Estimates for Decoding

2-3

Equalize the symbols by performing MMSE equalization on the extracted resources. Plot
the results.

pbchEqSym = nrEqualizeMMSE(pbchRxSym,pbchHestSym,nEst);
figure;
plot(pbchEqSym,'o:');
title('Equalized PBCH Constellation');

2 Signal Reception

2-4

Retrieve softbits by performing PBCH decoding on the equalized symbols.

pbchBits = nrPBCHDecode(pbchEqSym,ncellid,v)

pbchBits = 864×1
1010 ×

 -2.0000
 -2.0000
 2.0000
 -2.0000
 -2.0000
 2.0000
 2.0000

 Extract PBCH Symbols and Channel Estimates for Decoding

2-5

 -2.0000
 -2.0000
 -2.0000
 ⋮

See Also
Functions
nrEqualizeMMSE | nrExtractResources

2 Signal Reception

2-6

Code Generation and Deployment

• “What is C Code Generation from MATLAB?” on page 3-2
• “Functions and System Objects Supported for MATLAB Coder” on page 3-4

3

What is C Code Generation from MATLAB?
You can use 5G Toolbox together with MATLAB® Coder™ to:

• Create a MEX file to speed up your MATLAB application.
• Generate ANSI®/ISO® compliant C/C++ source code that implements your MATLAB

functions and models.
• Generate a standalone executable that runs independently of MATLAB on your

computer or another platform.

In general, the code you generate using the toolbox is portable ANSI C code. In order to
use code generation, you need a MATLAB Coder license. For more information, see
“Getting Started with MATLAB Coder” (MATLAB Coder).

Using MATLAB Coder
Creating a MATLAB Coder MEX file can substantially accelerate your MATLAB code. It is
also a convenient first step in a workflow that ultimately leads to completely standalone
code. When you create a MEX file, it runs in the MATLAB environment. Its inputs and
outputs are available for inspection just like any other MATLAB variable. You can then use
MATLAB tools for visualization, verification, and analysis.

The simplest way to generate MEX files from your MATLAB code is by using the codegen
function at the command line. For example, if you have an existing function,
myfunction.m, you can type the commands at the command line to compile and run the
MEX function. codegen adds a platform-specific extension to this name. In this case, the
"mex" suffix is added.

codegen myfunction.m
myfunction_mex;

Within your code, you can run specific commands either as generated C code or by using
the MATLAB engine. In cases where an isolated command does not yet have code
generation support, you can use the coder.extrinsic command to embed the
command in your code. This means that the generated code reenters the MATLAB
environment when it needs to run that particular command. This is also useful if you want
to embed commands that cannot generate code (such as plotting functions).

To generate standalone executables that run independently of the MATLAB environment,
create a MATLAB Coder project inside the MATLAB Coder Integrated Development

3 Code Generation and Deployment

3-2

Environment (IDE). Alternatively, you can call the codegen command in the command
line environment with appropriate configuration parameters. A standalone executable
requires you to write your own main.c or main.cpp function. See “C/C++ Code
Generation” (MATLAB Coder) for more information.

C/C++ Compiler Setup
Before using codegen to compile your code, you must set up your C/C++ compiler. For
32-bit Windows platforms, MathWorks® supplies a default compiler with MATLAB. If your
installation does not include a default compiler, you can supply your own compiler. For the
current list of supported compilers, see Supported and Compatible Compilers on the
MathWorks website. Install a compiler that is suitable for your platform, then read
“Setting Up the C or C++ Compiler” (MATLAB Coder). After installation, at the MATLAB
command prompt, run mex -setup. You can then use the codegen function to compile
your code.

Functions and System Objects That Support Code Generation
All 5G Toolbox functions and System objects support for code generation. For an
overview, see “Functions and System Objects Supported for MATLAB Coder” on page 3-
4.

See Also
Functions
codegen | mex

More About
• “MATLAB Code for Code Generation Workflow Overview” (MATLAB Coder)
• “Functions and System Objects Supported for MATLAB Coder” on page 3-4

 See Also

3-3

https://www.mathworks.com/support/compilers/current_release/

Functions and System Objects Supported for MATLAB
Coder

You can generate efficient C/C++ code for all 5G Toolbox functions and System objects by
using the MATLAB Coder product (requires a license).

An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

getPathFilters
info
nrBCH
nrBCHDecode
nrCDLChannel*
nrCodeBlockDesegmentLDPC
nrCodeBlockSegmentLDPC
nrCRCDecode
nrCRCEncode
nrDCIDecode
nrDCIEncode
nrDLSCHInfo
nrEqualizeMMSE
nrExtractResources
nrLayerDemap
nrLayerMap
nrLDPCDecode
nrLDPCEncode
nrPBCH
nrPBCHDecode
nrPBCHDMRS
nrPBCHDMRSIndices

3 Code Generation and Deployment

3-4

nrPBCHIndices
nrPBCHPRBS
nrPDCCH
nrPDCCHDecode
nrPDCCHPRBS
nrPDSCH
nrPDSCHDecode
nrPDSCHPRBS
nrPerfectChannelEstimate
nrPerfectTimingEstimate
nrPolarDecode
nrPolarEncode
nrPRBS
nrPSS
nrPSSIndices
nrRateMatchLDPC
nrRateMatchPolar
nrRateRecoverLDPC
nrRateRecoverPolar
nrSSS
nrSSSIndices
nrSymbolDemodulate
nrSymbolModulate
nrTDLChannel*

 Functions and System Objects Supported for MATLAB Coder

3-5

See Also

More About
• “What is C Code Generation from MATLAB?” on page 3-2

3 Code Generation and Deployment

3-6

